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Site-selective RNA cleavage is important for biotechnology and
therapy as well as biology. Natural ribozymes catalyze the site-
selective RNA cleavage reaction by utilizing metal ions and nucleo-
tide bases as catalysts, in which the nucleotide subject to be cleaved
generally is located in an unpaired region involving the tertiary
interactions.1 However, the facts that formation of a correct tertiary
structure is absolutely required for the activity and the sequence
near the active site is strictly restricted limit the application of
ribozymes and deoxyribozymes. It is suggested that RNA hydrolysis
proceeds via an in-line attack mechanism, in which the hydrolysis
is favored if the arrangement of the attacking 2′-hydroxyl group
and the 5′-leaving oxygen atom adopt an apical orientation during
the transesterification reaction, and it has also been indicated
that a duplex backbone geometry prohibits formation of the
in-line attack arrangement while the unpaired sites are preferentially
hydrolyzed.2 Moreover, although RNA cleavage can be achieved
using artificial scissors, such as ion macrocycles, cationic amines,
imidazole derivatives, and acridine derivatives,3 it is also difficult
to restrict the nucleotide to be cleaved because of a lack of rigidity
in the nucleotide conformation and nonspecific hydrolysis by the
scissors.

We have synthesized a novel phenylurea derivative of deoxy-
adenosine that tethers a phenyl group at N6 of deoxyadenosine by
an amide linker (X) in Figure 1, which mimics the Watson-Crick
A/T base pair. Our previous study revealed that the singleX
nucleoside at the 5′-dangling ends stabilized a DNA duplex as well
as or better than the formation of an A/T Watson-Crick base pair.4

Furthermore, when theX nucleoside was incorporated in the middle
of a DNA sequence,X induced a conformational change of its
opposite nucleotide.5 Therefore, it is expected that the ribonucleotide
opposite to theX nucleoside is prone to be cleaved if the
conformation of the ribonucleotide is perturbed byX. Here, we
show that the RNA strand cleavage exclusively occurs on the 3′-
side of the ribonucleotide opposite toX, which can be used as a
new tool for the site-selective RNA strand cleavage.

We prepared the RNA oligomers labeled by 6-carboxyl fluo-
rescein (6-FAM) at the 5′-end. Each could hybridize with a DNA
strand, forming RNA/DNA hybrid duplexes containing the A/W2

pair,X/W2 pair, or a single W2 bulge (W2 ) A, G, C, or U) (Figure
1).6 The melting temperature (Tm) value substantially differs
depending on the types of the A/W2 pair (63.0-50.1 °C) and the
W2 bulge (50.9-45.4°C) (see Supporting Information Table S1).7

In contrast, theTm values of the duplexes containingX are relatively
high and are similar to each other (53.2-52.4°C). This observation
suggests that the interaction in the duplexes containing theX/W2

pair is similar regardless of the W2 nucleotide.

The electrophoresis in denaturing polyacrylamide gel (PAGE)
was carried out to monitor RNA hydrolysis.8 Figure 2A shows the
PAGE image of RNA strand (W2 ) U) hybridized with the DNA
strand bearingX in the absence and presence of a metal ion (1 M
NaCl, 10 mM Co(NH3)6Cl3, or 10 mM MgCl2). A single product
band in addition to the precursor band was observed in the presence
of MgCl2, while no product band was seen under other conditions.
A comparison of the bands provided by the RNase T1 digestion
and the alkaline hydrolysis confirmed that the product generated
in the presence of MgCl2 had the six-nucleotide length and
corresponds to the scission on the 3′-side of the uracil opposite to
X (Figure 2B). The observation that NaCl and Co(NH3)6Cl3 did
not promote the hydrolysis implies that the transesterification
reaction is catalyzed by a metal hydroxide.1,9

Figure 3 demonstrates the sequence specificity of the RNA strand
scission. Regardless of the W2 nucleotide (A, G, C, or U), all the
duplexes containingX demonstrated a single product band, corre-
sponding to the scission on the 3′-side of the W2, while the duplexes
containing the A/W2 pair showed no product band (Figure 3A).
Importantly, the amounts of their cleaved products are similar (the
difference was less than 2-fold),8 suggesting that all theX/W2 pairs
adopt a similar conformation, consistent with theTm data. Figure
3B indicates the influences of the adjacent base pairs of theX/U
pair (TXT/AUA, CXC/GUG, GXG/CUC, and AXA/UUU as a
trinucleotide representation). Although the efficiency of the hy-
drolysis of the duplex containing GXG/CUC was slightly greater
(∼2-fold) than those of the other duplexes, all the duplexes showed
the cleaved product. Intriguingly, the duplex containing TXT/AUA
also generated the three-nucleotide-length product, which is another
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Figure 1. Chemical structure of X (left) and the nucleotide sequences used
in this study (right).

Figure 2. (A) Image of the electrophoresis of r(GACAGUGACAC)/
d(GTGTCXCTGTC) in the 20% PAGE containing 7 M urea. T1, RNase
T1 digestion; OH-, alkaline hydrolysis; lane 1, no metal ion added; lane 2,
1 M NaCl; lane 3, 10 mM Co(NH3)6Cl3; lane 4, 10 mM MgCl2. The
hydrolysis was carried out for 12 h at pH 8.0 at 37°C. (B) Schematic
representation of the site-specific cleavage of the RNA (gray) by the DNA
strand containingX (black).
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site able to be hybridized with the DNA strand (Figure 3C). This
is consistent with the lower specificity of the ribonucleotide opposite
X on the hydrolysis if the DNA strand can bind to an RNA.

On the other hand, the RNA/DNA duplexes containing a single
W2 bulge showed a lower amount of the six-nucleotide-length
product and less site-selective cleavage (Figure 4A), as has been
reported.10 The main product of the G-bulge duplex was five nu-
cleotides long, probably because the bulge nucleotide was the same
as the neighboring nucleotides (Figure 4B). This is consistent with
a slightly higherTm (50.9 °C) than the other bulge duplexes
(48.7-45.4°C).11 In contrast with the duplexes containing a single
bulge, the exclusive scission on the 3′-side of the nucleotide opposite
to X (Figure 4C) is suggestive of a high rigidity in the conforma-
tion.12

In conclusion, the adenosine derivativeX incorporated in a DNA
strand promoted the site-selective hydrolysis of the complementary
RNA in the presence of MgCl2. This observation suggests that the
DNA strand containingX changes the conformation of the

ribonucleotide opposite toX, probably because of the ability of
the phenyl group stacking inside of the duplex accompanied by
the W2 base flipped in an extrahelical position (Figure 2B). The
lack of pairing selectivity and the highTm have the advantage of
the site-selective base flipping in the target sequence and the site-
specific RNA cleavage. Because the RNA cleavage, in which the
sequence to be cleaved is not restricted, can be achieved with a
short DNA sequence under mild conditions, the DNA strand
incorporating the base-pair mimic nucleoside might be useful for
the development of a “universal deoxyribozyme” to exclusively
cleave a target RNA when the DNA strand can hybridize with the
RNA sequence. Modifications at the aromatic hydrocarbon group
and the amide linker may further expand the application of the base
pair-mimic nucleosides, such as for probing the RNA hydrolysis
mechanism, molecular biology, and antisense drugs.
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Figure 3. (A, B) PAGE images of the RNA strand hydrolysis in the
presence of 10 mM MgCl2. The reaction conditions were the same as
those described in Figure 2. (A) r(GACAGAGACAC) (lanes 1 and 2),
r(GACAGGGACAC) (lanes 3 and 4), r(GACAGCGACAC) (lanes 5 and
6), and r(GACAGUGACAC) (lanes 7 and 8) hybridized with d(GTGT-
CACTGTC) (lanes 1, 3, 5, and 7) or d(GTGTCXCTGTC) (lanes 2, 4, 6,
and 8). (B) r(GACAAUAACAC) (lanes 1 and 2), r(GACAGUGACAC)
(lanes 3 and 4), r(GACACUCACAC) (lanes 5 and 6), and r(GACAUUUA-
CAC) (lanes 7 and 8) hybridized with the complementary DNA sequence
containing A (lanes 1, 3, 5, and 7) orX (lanes 2, 4, 6, and 8) at the 6-position
of the DNA strand. (C) Two patterns of the r(GACAAUAACAC) hydrolysis
hybridized with d(GTGTTXTTGTC). The arrow indicates the cleavage site
indicated in Figure 3B.

Figure 4. (A) PAGE images of the RNA hydrolysis hybridized with
d(GTGTCCTGTC) forming the single W2 bulge. The reaction was carried
out at 37°C in the presence of 10 mM MgCl2 for 0, 12, 24, 48, and 72 h
from left to right. (B) Possible migration of the G-bulge in the duplex of
r(GACAGGGACAC)/d(GTGTCCTGTC). (C) PAGE images of the RNA
hydrolysis hybridized with d(GTGTCXCTGTC) forming theX/U pair.
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